ELISA is a test that can be used to detect either antibody (Ab) or antigen such as viral proteins. There are numerous methods for developing ELISA tests.

Commercial ELISA test kits are available to detect:
- Avian influenza virus antibody in chicken serum
- Newcastle disease virus antibody in chicken serum
- Newcastle disease virus antibody in turkey serum

These commercial ELISAs are available from two companies, IDEXX Inc., and Synbiotics. In this Lab, students will be able to run one ELISA test from either IDEXX or Synbiotics. Although the test formats and procedures are similar, there are differences. Therefore, be sure that you have the correct protocol and reagents for the correct kit.

Advantages and limitations of ELISA tests for AIV and NDV antibody
- Fast—90 samples can be tested in 2-3 hours
- Good sensitivity
- Many samples can be processed at once—about 90 samples per plate and several plates may be processed at once.
- Very little sample volume is needed, <10 μl in most cases
- Quantitative—can measure the amount of the Ab present, good for vaccine response monitoring, but not highly precise
- Easy to learn, simple procedures
- May need specialized equipment: plate reader and washer
- Specificity varies by target; over all very good, but not great specificity
- Measures exposure and vaccine response, but not acute infection. For example, once a bird is ELISA Ab positive, the infection is probably over.
- Regulatory considerations

Materials needed
- ELISA plate and kit reagents IDEXX or Synbiotics
 1. ELISA plate
 2. Positive control
 3. Negative control
 4. Dilution buffer
 5. Conjugate (secondary antibody)
 6. Substrate
 7. Stop Solution
 8. Wash Solution (Synbiotics only)
- Pipet and pipet tips
- Record Sheet
- Multi-channel pipet
- dilution tubes
- Wash bottle or mechanical washer
- Reader and computer
- Unknown test samples
The manufacturers protocol for each kit is in your lab notebook. A brief protocol for each kit follows:

IDEXX brief protocol
1. Fill out the record sheet to record where each sample will be. Run samples in duplicate
2. Label dilution tubes
3. Add 1 ml of diluent to dilution tubes
4. Add 2 μl of test serum to a dilution tube
5. Do NOT dilute controls
6. Add negative control to plate: 0.1 ml to wells A1 and A2
7. Add positive control to plate: 0.1 ml to wells A3 and A4
8. Add 100 μl of diluted test serum to the plate according to your record sheet
9. Incubate for 30 minutes
10. Wash with distilled water
11. Add 100 μl of conjugate to all wells of your test plate
12. Incubate for 30 minutes
13. Wash with distilled water
14. Add 100 μl of TMB substrate to each well
15. Incubate for 15 minutes
16. Add 100 μl of stop solution to each well
17. Read results

SYNBIOTICS brief protocol
1. Fill out the record sheet to record where each sample will be. Run samples in duplicate
2. Prepare wash solution
3. Label dilution tubes
4. Add 0.3 ml diluent to each dilution tube
5. Add 6 μl of test serum to a dilution tube
6. Dilute controls the same way as the test samples
7. Add 50 μl of dilution buffer to each well of the ELISA plate
8. Add positive control: 50 μl to wells A1, A3 and H11
9. Add negative control: 50 μl to wells A2, H10, and H12
10. Add 50 μl of diluted test serum to the plate according to your record sheet
11. Incubate for 30 minutes
12. Wash with wash solution
13. Dilute conjugate: Add 100 μl of conjugate to 10 ml of dilution buffer and mix
14. Add 100 μl of diluted conjugate to all wells of your test plate
15. Incubate for 30 minutes
16. Wash with wash solution
17. Add 100 μl substrate to each well
18. Incubate for 15 minutes
19. Dilute stop solution: Add 2.5 ml stop solution to 10 ml of distilled water
20. Add 100 μl of diluted stop solution to each well
21. Read results
Results Interpretation

- Results should be recorded by reading the optical densities of the plates in a plate reader at the correct absorbance:
 - IDEXX: 650nm
 - Synbiotics: 405-410nm

Each manufacturer supplies computer software specific for their test which calculates which samples are negative and the titers of positive samples.

The status of a sample is evaluated by the sample to positive ratio (S/P ratio):

$$S/P \text{ ratio} = \frac{\text{Sample mean (mean of optical absorbance)} - \text{negative control mean}}{\text{positive control mean} - \text{negative control mean}}$$

- IDEXX kit S/P ratios of greater than 0.5 are considered positive
- Synbiotics kit S/P ratios of greater than 0.299 are considered positive

Example:
- Sample mean = 0.820
- Negative control mean = 0.053
- Positive control mean = 0.563

$$0.820 - 0.053 = 0.767 = 1.5 = \text{Positive}$$
$$0.563 - 0.053 = 0.510$$

Values are relatively quantitative: a higher value indicates more antibody.

Valid ranges for the positive and negative controls for each kit

IDEXX
- Negative control: 0.150 or less
 - The difference between the positive and negative control means must be greater than 0.075
 - Example: if negative control = 0.100, the positive control must be 0.176 or greater

SYNBIOTICS
- Negative control: Less than 0.200
- Positive control: 0.250 – 0.900
IDEXX ELISA Plate

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>NC-</td>
<td>NC-</td>
<td>PC+</td>
<td>PC+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

Synbiotics ELISA Plate

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>PC+</td>
<td>NC-</td>
<td>PC+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td>PC+</td>
<td>NC-</td>
</tr>
</tbody>
</table>
AVIAN INFLUENZA
VIRUS ANTIBODY
TEST KIT

GENERAL INFORMATION AND
INTENDED USES
Avian Influenza Virus (AIV), also known as Fowl Plague, is a viral disease of domestic and wild birds that is characterized by a full range of responses from almost no signs of the disease to very high mortality. The causal orthomyxoviruses are type A influenza viruses. There are 14 known serologically distinct subtypes based on surface hemagglutinins and 9 based on neuraminidases. Subtypes H5 and H7 are associated with significant to catastrophic losses. Disease signs range from only a slight decrease in egg production to a highly fatal fulminating infection. Signs of infection may include respiratory problems, edema of the head and face and diarrhea. The most severe lesions are generally characterized as congestive and hemorrhagic.

ProFLOK® AIV ELISA Kit is a rapid and specific presumptive screening test for the detection of antibody to AIV in chicken serum samples. It was designed for screening large numbers of chicken sera from numerous flocks; however, additional conventional AIV serologic testing [e.g. agar gel precipitin (AGP), hemagglutination-inhibition (HI) test and neuraminidase-inhibition (NI)] and virus isolation techniques are needed to confirm AIV negative and AIV-infected chicken flocks.

The assay is designed to measure AIV antibody bound to AIV antigen coated plates. The principle of the test is as follows: Serum obtained from chickens exposed to AIV antigens contains specific anti-AIV antibodies. Serum, diluted in Dilution Buffer, is added to an AIV antigen coated plate. Specific AIV antibody in the serum forms an antibody-antigen complex with the AIV antigen bound to the plate. After washing the plate, an affinity purified goat anti-chicken IgG (H+L) peroxidase conjugate is added to each well. The antibody-antigen complex remaining from the previous step binds with the conjugate. After a brief incubation period, the unbound conjugate is removed by a second wash step. Substrate, which contains a chromagen (ABTS), is added to each well. Chromagen color change (from clear to green-blue) occurs in the presence of the peroxidase enzyme. The relative intensity of color developed in 15 minutes (compared to controls) is directly proportional to the level of AIV antibody in the serum. After the substrate has incubated, Stop Solution is added to each well to terminate the reaction and the plate is read using an ELISA plate reader at 405-410 nm.

REAGENTS REQUIRED TO PERFORM 90 TESTS
a) 1 AIV antigen coated plate
b) 10 µl AIV Positive Control Serum
c) 10 µl Normal Control Serum
d) 100 µl Goat anti-Chicken IgG (H+L) Peroxidase Conjugate Solution
e) 40 ml Dilution Buffer
f) 10 ml ABTS Hydrogen Peroxide Substrate Solution
g) 2.5 ml 5X Stop Solution, 5% SDS (dilute [1:5] with laboratory grade water)
h) 20 ml 20X Wash Solution (dilute [1:20] with laboratory grade water)

NOTE: Store all reagents provided in the kit at 2-7°C. Reagents should not be frozen.

EQUIPMENT AND MATERIALS
REQUIRED BUT NOT PROVIDED
a) High precision pipette (i.e. 1-20 microliter pipette)
b) 0.2 ml, 1.0 ml and 5.0 ml pipettes
c) 8 or 12 channel pipette (or translating device) and pipette tips
d) 2 graduated cylinders (50 ml)
e) 1 ml or 5 ml borosilicate glass test tubes
f) Uncoated well binding 96 well plates (i.e. Nunc catalog #269620).
g) Laboratory grade (Distilled or R.O.) water
h) 96 well plate reading spectrophotometer with 405-410 nm filter
i) Plate washing apparatus
j) Waste container with bleach or other oxidizing agent

WARNINGS TO THE USERS OF REAGENTS
AND AIV ANTIGEN COATED PLATES
a) Handle all reagents and samples as biohazardous material.
b) Keep all solutions away from skin and eyes. If exposure should occur, immediately flush affected areas with cold water.
c) Wash solution, control sera, test plates, field samples and all other test kit reagents should be properly decontaminated with bleach or other strong oxidizing agent before disposal.
d) Take special care not to contaminate any of the test reagents with serum or bacterial agents.
e) Humidity indicators are supplied with each plate. If any of the indicator exhibits a pink color, the plate may be compromised in some way; decontaminate (i.e. wash the plate with bleach solution) and dispose of the plate.
f) The best results are achieved by following the protocols as they are described below, using good, safe laboratory techniques.
g) Do not use this kit after the expiration date.
h) NEVER PIPETTE BY MOUTH.

ALLOW ALL REAGENTS TO COME TO ROOM TEMPERATURE BEFORE STARTING!
SAMPLE COLLECTION

For routine serologic flock monitoring, it is suggested that at least 30 or more sera per flock be randomly collected at standard time intervals (i.e. every four weeks). Proper sample collection procedures, serum harvest and serum sample storage (4 °C for up to four days or -20 °C for longer periods) are needed to provide reliable test results. To achieve better specificity and to minimize possible false positive reactions, serum samples that are contaminated with bacteria or are very fatty should be excluded from testing.

SAMPLE DILUTION PROCEDURE

Dilute serum samples using Dilution Buffer in a clean, uncoated 96 well microtiter plate. Frozen serum samples should be completely thawed and thoroughly mixed before diluting. Set up samples and controls as shown in Figure 1.

PREPARATION OF THE SERUM DILUTION PLATE

a) Add 300 µl Dilution Buffer to each well of an uncoated 96 well microtiter plate. This plate is referred to as the serum dilution plate.

b) Add 6 µl unknown serum per well as per Figure 1 (producing a 1:50 dilution). Start with well A4 and end with well H9 (moving left to right, row by row of wells). For example, wells 1 through 30 contain the diluted sera of flock 1, wells 31-60 contain the diluted sera of flock 2, etc.

c) Add 6 µl of Normal Control Serum (producing a 1:50 dilution) to wells A2, H10 and H12.

d) Aspirate and remove any liquid in dilution plate wells A1, A3 and H11.

e) Allow all diluted sera to equilibrate in Dilution Buffer for 5 minutes before transferring to an AIV antigen coated ELISA plate.

f) Diluted serum should be tested within 24 hours.

This dilution format provides adequate quantities of diluted serum samples to conduct four additional ProFLOK® ELISA tests (i.e. IBD, IBV, ILS and REO) using the same serum dilution plate.

Preparation of AIV Positive Control

An AIV Positive Control Serum has been provided with this kit. Dilute the appropriate volume of AIV Positive Control Serum with Dilution Buffer (1:50) in a clean, glass test tube. For example, dilute 6 µl of positive control serum in 300 µl Dilution Buffer. Mix well. 150 µl of diluted AIV Positive Control is needed per ELISA plate.

Preparation of Conjugate Solution

The horseradish peroxidase conjugated anti-chicken IgG (H+L) is supplied in HRP Stabilizer. Dilute 100 µl stock conjugate in 10 ml Dilution Buffer (1:100 dilution). Mix well. This 10 ml preparation will supply sufficient conjugate for one 96 well ELISA plate.

Preparation of 1X Wash Solution

Dilute 20 ml concentrated Wash Solution in 380 ml laboratory grade (distilled or R.O.) water (1:20). Mix well. Approximately 400 ml Wash Solution is needed for each 96 well ELISA plate.

Preparation of the Substrate Solution

The Substrate Solution is ready to use. Each plate will require approximately 10 ml substrate solution. For best results, the substrate solution must be equilibrated to room temperature before use.

Preparation of 1X Stop Solution

Dilute 2.5 ml concentrated Stop Solution in 10 ml laboratory grade (distilled or R.O.) water (1:5). Mix well. Approximately 12.5 ml Stop Solution is needed for each 96 well ELISA plate.

NOTE: Storage of 5X Stop Solution at refrigerated temperatures may cause the formation of a white solid. This does not affect product performance. Warm at room temperature or 37 °C to dissolve before use.
ELISA TEST PROCEDURE

PREPARING THE TEST PLATE

a) Remove an AIV antigen coated test plate from the protective bag and label according to serum dilution plate identification.
b) Add 50 µl Dilution Buffer to all wells on the test plate.
c) Add 50 µl diluted AIV Positive Control Serum to wells A1, A3 and H11. Discard pipette tips.
d) Using an 8 or 12 channel pipette transfer 50 µl/well of each of the diluted serum samples and Normal Control Serum samples from the serum dilution plate to the corresponding wells of the AIV coated test plate (yields a 1:100 dilution). Discard pipette tips after each row of sample is transferred. Transfer of samples to the ELISA plate should be done as quickly as possible.
e) Incubate plate for 30 minutes at room temperature.

WASH PROCEDURE

f) Tap out liquid from each well into an appropriate vessel containing bleach or other decontamination agent.
g) Using an 8 or 12 channel pipette (or comparable automatic washing device), fill each well with approxi-
mately 300 µl Wash Solution. Allow to soak in wells for 3 minutes; then discard contents into an appro-
piate waste container (waste container should contain bleach solution). Tap inverted plate to ensure that all residual liquid is removed. Repeat wash procedure 2 more times.

NOTE: The wash procedure is a very critical step in any ELISA procedure. Please follow the above steps as directed.

ADDITION OF ANTI-CHICKEN IgG PEROXIDASE CONJUGATE, SUBSTRATE AND STOP SOLUTION

h) Using an 8 or 12 channel pipette (or transfiltering device) dispense 100 µl diluted conjugate (prepared as described above) into each assay well. Discard pipette tips.
i) Incubate for 30 minutes at room temperature.
j) WASH as in steps f and g above.
k) Using an 8 or 12 channel pipette (or transfiltering device) dispense 100 µl Substrate Solution into each test well. Discard pipette tips.
l) Incubate 15 minutes at room temperature.
m) Using an 8 or 12 channel pipette (or transfiltering device) add 100 µl diluted Stop Solution (prepared as described above) to each test well.

Allow bubbles to dispense before reading plate.

MANUAL PROCESSING OF DATA

a) Read the plate using an ELISA plate reader set at 405-410 nm. Be sure to blank the reader as directed.
b) Calculate the average Positive Control Serum absorbance (Optical Density [O.D.]) using the absorbance values of wells A1, A3 and H11. Calculate the average Normal Control Serum absorbance using values obtained from wells A2, H10 and H12. Record both averages.
c) Subtract the average normal control absorbance from the average positive absorbance. The difference is the Corrected Positive Control.
d) Calculate a sample to positive (Sp) ratio by subtracting the average normal control absorbance from each sample absorbance. The difference is divided by the corrected positive control. Use the following equation format:

\[
\text{S/P} = \frac{\text{SAMPLE Absorbance} - \text{NORMAL CONTROL Absorbance}}{\text{NORMAL CONTROL Absorbance}}
\]

The AIV ELISA titers can be calculated by the following suggested equation:

\[
\text{LOG}_2 \text{TITER} = 1.464 \times \text{LOG}_{10} \text{Sp} + 3.197
\]

Example:

1. Example Positive Control Absorbance:
 0.585, 0.610, 0.590
 Average = (0.585 + 0.610 + 0.590) / 3 = 0.595
2. Example Normal Controls:
 0.078, 0.067, 0.057
 Average = (0.078 + 0.067 + 0.057) / 3 = 0.067
3. Corrected Positive Control:
 (0.595 - 0.067) / 0.595 = 0.224
4. Example Sp value calculation:
 Absorbance of sample = 0.560
 \[\text{LOG}_{10} \text{Sp} = 0.560 - 0.067 = 0.934\]
5. Example of Calculation of titer using the Sp from above:
 \[\text{LOG}_2 \text{TITER} = 1.464 \times \text{LOG}_{10} \text{Sp} + 3.197\]
 \[\text{TITER} = \text{ANTILOG} 3.15\]
 \[\text{TITER} = 1413\]

RESULTS

ASSAY CONTROL VALUES

Valid AIV ELISA results are obtained when the average optical density (O.D.) value of the Normal Control Serum is less than 0.200 and the Corrected Positive Control value range is between 0.250 and 0.900. If either of these values are out of range, the AIV test results should be considered invalid and the samples should be retested. Samples testing with an Sp value of less than or equal to 0.299 will receive a 0 titer value and are considered non-reactive for AIV and other avian pathogens.

Under optimal conditions* the suggested O.D. value ranges of 0.050 to 0.095 for AIV Normal Control Serum and 0.400 to 1.00 for AIV Positive Control Serum should be strived for to ensure the most consistent laboratory test results. Please note that tests with O.D. values which do not fall within the suggested O.D. ranges above does not constitute an invalid test.

BIBLIOGRAPHY

*Optimal conditions are at room temperature [20 to 25 °C]. Higher room temperatures may result in slightly higher OD values.

Interpretation of Results

The AIV Sp ratio values and/or ELISA titer values obtained for sera should be interpreted using the following value ranges:

S/P

- Titer Range
- Antibody Status

<table>
<thead>
<tr>
<th>Titer</th>
<th>Antibody Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 0.200</td>
<td>Non-Reacting</td>
</tr>
<tr>
<td>0.300 to 0.499</td>
<td>< 50</td>
</tr>
<tr>
<td>0.500 or greater</td>
<td>≥ 50</td>
</tr>
</tbody>
</table>

a. Non-reactive: Serum samples with an AIV Sp ratio value less than 0.300 are not tested for antibodies in this test.
b. Sensitive: Serum samples with an AIV Sp ratio value greater than 0.500 are considered positive for antibodies in this test.

Customers Only

Please contact Sibentos Technical Service at 800-247-1259 or (816) 454-7744 with questions and comments.
Avian Influenza Virus Antibody Test Kit

Name and intended use
FlockCheck™ Al is IDEXX's enzyme immune assay for the detection of antibody to Avian Influenza Virus (AIV) in chicken serum.

General Information
Domestic and wild avian species are affected by avian influenza viruses. The disease is characterized by a wide range of responses which include lethargy, no clinical signs to high mortality. Respiratory signs are common, along with drop in egg production, greenish diarrhea, droppings nasal and oral discharge, and cyanosis and edema of the head, comb and wattles. Due to the variation and severity of clinical symptoms, serological testing provides significant advantages to detection of selected birds. Monitoring for exposure of a flock to influenza is facilitated by the measurement of antibody to avian influenza in serum.

Description and Principles
This assay is designed to measure the relative level of antibody to Al in chicken serum. Vial of antigen is coated on 96-well plates. Upon incubation of the test sample in the coated well, antibody specific to Al forms a complex with the coated viral antigens. After washing away unbound material from the wells, a conjugate is added which binds to any attached antibody in the wells. Unbound conjugate is washed away and enzyme substrate is added. Subsequent color development is directly related to the amount of antibody to Al present in the test sample.

Materials Required but Not Provided
All pipet tips and multi-channel pipetting device with disposable pipet tips, 96-well plate reader, tubes for diluting samples, distilled or deionized water and device for the delivery and aspiration of wash solution.

Precautions and Warnings for Users
Handle all AIV biological materials as though capable of transmitting AIV. The antigen coated plates may be a source of AIV. Prior to coating on the solid phase, the antigen has been inactivated by chemical treatment. Nevertheless, do not assume complete inactivation. Some kit components contain sodium azide as a preservative. Disposal requires flushing plumbing with large volumes of water to prevent formation of copper or lead azide complexes which may explode upon percussion. Do not expose TMB solutions to strong light or any oxidation agents. Store reagents at 2°-8°C (36°-46°F). All wastes should be properly decontaminated prior to disposal. Do not use components past expiration date and do not intermix components from kits with different lot numbers. Careful pipetting and washing throughout this procedure are necessary to maintain precision and accuracy. Optimal results will be obtained by strict adherence to this protocol. For veterinary use only.

Preparation of Samples
Dilute test samples five hundred fold (1:500) with sample diluent prior to being assayed (e.g., by diluting 1 μl of sample with 500 μl of sample diluent). NOTE: DO NOT DILUTE CONTROLS. Be sure to change tips for each sample. Samples must be thoroughly mixed prior to dispensing into the coated plate.

Test Procedure
Reagents should be allowed to come to room temperature, then mixed by inverting and swirling. 1. Obtain antigen-coated plate(s) and record the sample position on a FlockCheck worksheet. 2. Dispense 100 μl of UNDILUTED Negative Control into wells A1 and A2. 3. Dispense 100 μl of UNDILUTED Positive Control into wells A3 and A4. 4. Dispense 100 μl of diluted sample into appropriate wells. Al samples should be run in duplicate. 5. Incubate for 30 minutes at room temperature. 6. Wash each well with approximately 350 μl of distilled or deionized water 3-5 times. 7. Dispense 100 μl of (Goat) Anti-Chicken(Goat) Anti-Turkey: Horse-radish Peroxidase Conjugate into each well. 8. Incubate for 30 minutes at room temperature. 9. Repeat step 6. 10. Dispense 100 μl of TMB substrate solution into each well. 11. Incubate for 15 minutes at room temperature. 12. Dispense 100 μl of Stop Solution into each well to stop the reaction. 13. Read plate reader with at least 400 nm. 14. Measure and record absorbance values at 650 nm, A(650).

Results
For the assay to be valid, the difference between the Positive Control mean and the Negative Control mean (PCX - NCX) should be greater than 0.075. The Negative Control mean absorbance should be less than or equal to 0.150. The presence or absence of antibody to Al is determined by relating the A(650) value of the unknown to the Positive Control mean. The Positive Control standardized and represents significant antibody levels to Al in chicken serum. The relative level of antibody in the unknown is determined by calculating the sample to positive (SP/P) ratio.

Interpretation of Results
Serum samples with SP/P ratios of less than or equal to 0.5 should be considered negative. SP/P ratios greater than 0.5 should be considered positive and indicate exposure to Al. CLISA positive samples should be confirmed by additional serological testing such as agar gel precipitation test (AGP).

Calculations
1. Negative Control mean (NCX) Well A1 (WAL) + Well A2 (WAL) = NCX 2
2. Positive Control mean (PCX) Well A3 (WAL) + Well A4 (WAL) = PCX 2
3. SP/P Ratio Sample mean - NCX = SP/P 2

For assistance call IDEXX Customer Service

IDEXX USA Tel: 800-943-3999 or 207-856-0190
Fax: 800-318-5461 or 207-856-0196
Avian Influenza
Enzyme-Linked Immunosorbent Assay (ELISA)

Mary Lea Killian
USDA APHIS VS
National Veterinary Services Laboratories
Ames, Iowa

Sample Collection for ELISA testing

- For routine monitoring, it is suggested that at least 30 or more sera per flock be randomly collected at standard time intervals (i.e. every four weeks). Proper sample collection procedures, serum harvest, and serum sample storage are needed to provide reliable results.

- To achieve better specificity and to minimize possible false positive reactions, serum samples that are contaminated with bacteria or are very fatty should be excluded from testing.

ELISA Kits for Antibody Detection

- Commercial ELISA test kits are available to detect
 - Avian influenza virus antibody in chicken serum
 - Newcastle disease virus antibody in chicken serum
 - Newcastle disease virus antibody in turkey serum

ELISA Kits for AIV Ab Detection

- IDEXX
- SYNBIOTICS

ELISA for AIV and NDV

- Advantages
 - Fast—90 samples tested in 2-3 hours
 - Good sensitivity
 - High throughput—90 samples per plate, multiple plates at once
 - Very little sample volume required, <10 µl
 - Easy to learn
ELISA for AIV and NDV

- Limitations
 - Need specialized equipment—plate reader and washer
 - Specificity varies by target
 - Measures exposure and vaccine response, but not acute infection
 - AGID, HI, NI, and VI are needed to confirm AIV negative and AIV-infected chicken flocks
 - Regulatory considerations

ELISA Laboratory

- Materials Needed
 - Each person will have their own AIV ELISA plate, but everyone in each group of three will use the same kit
 - IDEXX
 - OR
 - SYNBIOTICS
 - Record Sheet
 - Test samples and dilution tubes
 - Pipets and tips

Materials needed

- The materials for your kit (manufacturer specific).
 1. ELISA plate
 2. Positive control
 3. Negative control
 4. Dilution Buffer
 5. Conjugate (Secondary antibody)
 6. Substrate
 7. Stop solution
 8. Wash solution- Synbiotics only

ELISA Laboratory 1

- IDEXX
 - Fill out the record sheet to record where each sample will be
 - Run samples in duplicate
- SYNBIOTICS
 - Fill out the record sheet to record where each sample will be
 - Run samples in duplicate
 - Prepare wash solution

ELISA Laboratory 2

- IDEXX
 - Label dilution tubes
 - Add 1ml of diluent to dilution tubes
 - Add 2μl of test serum to a dilution tube
 - Do NOT dilute controls
- SYNBIOTICS
 - Label dilution tubes
 - Add 0.3ml diluent to each dilution tube
 - Add 6μl of test serum to a dilution tube
 - Dilute controls the same way as the test samples
 - Add 50μl of dilution buffer to each well of the ELISA plate

ELISA Laboratory 3

- IDEXX
 - Add positive control to plate
 - 0.1ml to wells A1 and A2
 - Add negative control
 - 0.1ml to wells A3 and A4
- SYNBIOTICS
 - Add positive control
 - 50μl to wells A1, A3 and H11
 - Add negative control
 - 50μl to wells A2, H10 and H12
ELISA Laboratory 4

IDEXX
- Add 100μl of diluted test serum to the plate according to your record sheet
- Incubate for 30 minutes
- Wash with distilled water

SYNBIOTICS
- Add 50μl of diluted test serum to the plate according to your record sheet
- Incubate for 30 minutes
- Wash with wash solution

ELISA Laboratory 5

IDEXX
- Add 100μl of conjugate to all wells of your test plate
- Incubate for 30 minutes
- Wash with distilled water

SYNBIOTICS
- Dilute Conjugate
 - Add 100μl of conjugate to 10mls of dilution buffer and mix
- Add 100μl of diluted conjugate to all wells of your test plate
- Incubate for 30 minutes
- Wash with wash solution

ELISA Laboratory 6

IDEXX
- Add 100μl of TMB substrate to each well
- Incubate for 15 minutes
- Add 100μl of stop solution to each well
- Read results

SYNBIOTICS
- Add 100μl substrate to each well
- Incubate for 15 minutes
- Dilute stop solution
 - Add 2.5ml of stop solution to 10ml of distilled water.
 - Add 100μl of diluted stop solution to each well
- Read results

ELISA Results

IDEXX
- Results should be recorded by reading the optical densities of the plates in a plate reader at the correct absorbance:
 - IDEXX: 650nm
 - Synbiotics: 405-410nm

Each manufacturer supplies computer software specific for their test which calculates which samples are negative and the titers of positive samples.

ELISA Results

- The status of a sample are evaluated by the sample to positive ratio (S/P ratio):

\[
\frac{\text{Sample mean} - \text{negative control mean}}{\text{positive control mean} - \text{negative control mean}}
\]

\[
(\text{mean of optical absorbance})
\]

With the IDEXX kit S/P ratios of greater than 0.5 are considered positive

With the Synbiotics kit S/P ratios of greater than 0.299 are considered positive

- Example:
 Sample mean= 0.820
 Negative control mean=0.053
 Positive control mean=0.563

\[
\frac{0.820-0.053}{0.563-0.053} = \frac{0.767}{0.510} = 1.5 \text{ or Positive}
\]

Values are relatively quantitative: a higher value indicates more antibody.
Valid ranges for the positive and negative controls for each kit

<table>
<thead>
<tr>
<th>Kit</th>
<th>Negative control</th>
<th>Positive control</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDEXX</td>
<td>0.150 or less</td>
<td></td>
</tr>
<tr>
<td>SYNBIOTICS</td>
<td>Less than 0.200</td>
<td>0.250-0.900</td>
</tr>
</tbody>
</table>

The difference between the positive and negative control means must be greater than 0.075.

Example: if negative control = 0.100, the positive control must be 0.176 or greater.