Rhipicephalus (Boophilus) annulatus

Cattle Tick, Cattle Fever Tick, American Cattle Tick

Last Updated: June 2022

Importance

Rhipicephalus (Boophilus) annulatus (formerly *Boophilus annulatus*) is a hard tick found most often on cattle. Heavy tick burdens can cause anemia, decrease livestock productivity and damage hides. *R. annulatus* can also transmit several pathogens including *Babesia bigemina* and *Babesia bovis* (bovine babesiosis) and *Anaplasma marginale* (anaplasmosis). It is closely related to *B. microplus*, another important vector for these two *Babesia* species. Control programs for these two tick species, conducted between 1906 and 1943, were key to eliminating bovine babesiosis (also called “cattle fever”) from the United States. Before its eradication, this disease cost the U.S. an estimated $130.5 million in direct and indirect annual economic losses; in current dollars, the equivalent would be $3 billion. *R. microplus* and *R. annulatus* still exist in Mexico and South America, and a permanent quarantine zone, with continued surveillance and special regulations for livestock, is maintained along the Mexican border to prevent their reintroduction into the U.S. However, wildlife hosts for these ticks, as well as both legal and illegal importation of cattle, complicate control programs.

Species Affected

Cattle are the major hosts for *R. annulatus* in most regions, but it is also common on water buffalo (*Bubalus bubalis*) and probably occurs on related bovids. This tick is found occasionally on other domestic animals including equids, sheep, goats and dogs, as well as some free-living or captive wild mammals. In wildlife, it has been described on several species of cervids, including white-tailed deer (*Odocoileus virginianus*) and red deer (*Cervus elaphus*), as well as nilgai (*Boselaphus tragocamelus*) and gazelles (*Gazella gazella*), and high tick burdens were seen on Nubian ibexes (*Capra ibex nubiana*) in Israel. White-tailed deer appear to act as alternative maintenance hosts in North America, and feral nilgai may also play a role, though the tick’s reproductive success was lower on these species than on cattle. There are a few reports of *R. annulatus* in wildlife other than large ungulates, such as capybaras (*Hydrochoerus spp.*) and a hedgehog (*Hemiechinus auritus libycus*).

Geographic Distribution

R. annulatus is widespread in subtropical and tropical regions, but some studies suggest that it may be adapted to somewhat cooler and drier regions than its close relative *R. microplus*. *R. annulatus* is endemic in Mexico and parts of Asia, Africa, the Middle East, South America and Europe, including the southern regions of the former U.S.S.R.; and the Mediterranean region in Europe. It has been eradicated from most of the U.S., but still occurs in a buffer quarantine zone in California and Texas, along the Mexican border, with occasional incursions beyond this zone.

Life Cycle

Ticks in the subgenus *Boophilus* can complete their life cycle in as little as 3-4 weeks, which can result in a heavy tick burden. *R. annulatus* is a one-host tick: once the larva hatches and finds a host, all of its life stages are usually spent on that animal.

Female *R. annulatus* typically deposit their eggs in crevices or debris, or under stones. Once the larvae hatch, they crawl up grass or other plants to find a host. They may also be blown by the wind. In some climates, the larvae can survive for as long as 3 to 4 months without feeding in summer, and up to 6 months in cooler temperatures. Thus, a tick may spend up to 80% of its life as a questing larva. Ticks that do not find a host eventually die of starvation.

Newly attached larvae (also called 'seed ticks') are usually found on the softer skin inside the thigh, flanks, and forelegs. They may also occur on the abdomen and brisket. Each developmental stage (larva, nymph and adult) feeds only once, over a period of several days. Larvae and nymphs molt to the next stage after feeding, while remaining on the same animal. Adult male ticks become sexually mature after feeding, and mate with feeding females. An adult female tick that has fed and mated detaches from the host and deposits a single batch of many eggs in the environment, then dies after ovipositing.
Rhipicephalus (Boophilus) annulatus

Identification

R. annulatus belongs to the family Ixodidae (hard ticks). Hard ticks have a dorsal shield (scutum) and their mouthparts (capitulum) protrude forward when they are seen from above. Members of the subgenus *Boophilus* have a hexagonal basis capitulum. The spiracular plate is rounded or oval and the palps are very short, compressed, and ridged dorsally and laterally. Males have adanal shields and accessory shields. The anal groove is absent or indistinct in females, and faint in males. There are no festoons or ornamentation.

R. annulatus resembles *R. microplus*; which, as adults, have a short, straight capitulum, pale legs, and an oval to rectangular body with a shield that is oval and wider at the front. The snout is short and straight. One subtle difference between *R. annulatus* and *R. microplus* is that the internal margin on the first palp of *R. annulatus* is long and slightly concave, while the margin is short and deeply concave in *R. microplus*. Unlike *R. microplus*, male *R. annulatus* lack a caudal appendage. In female ticks, the spurs and cleft between the spurs on the first coxa are less distinct in *R. annulatus* than *R. microplus*, and the second coxa does not have a spur (*R. microplus* has a small spur).

Control

Disease Reporting

Veterinarians who encounter or suspect the presence of an exotic tick should follow their national and/or local guidelines for disease reporting. In the U.S., state or federal authorities must be notified immediately.

Prevention

Measures used to exclude exotic ticks from a country include pre-export inspections to certify that animals are free of ectoparasites, quarantines upon entry, and treatment with acaricides. During the first half of the 20th century, *R. annulatus* and the closely related tick *R. microplus* were eradicated from most of the U.S. in order to eliminate bovine babesiosis. This program, which included acaricide treatment of both cattle and equids, was facilitated by these ticks’ one-host life cycle and preference for feeding on cattle. It required considerable resources and time, and was complicated in Florida by the presence of white-tailed deer as alternate tick hosts.

Currently, tick incursions from Mexico are controlled by USDA APHIS Fever Tick Eradication Program personnel, including mounted inspectors called “tick riders.” Tick riders patrol the Rio Grande River, inspect ranches in the quarantine zone, and apprehend stray and smuggled livestock from Mexico. If a ranch in this zone becomes infested, it is placed under a 6-9 month quarantine and the animals are treated with acaricides. Before being moved from the quarantine zone, all cattle and horses must be inspected and given a precautionary acaricide treatment. Due to the occurrence of ticks on white-tailed deer and possibly feral nilgai, control programs also incorporate ivermectin-based feed and acaricide treatments for wildlife.

Acaricides are used in endemic regions to eliminate *R. annulatus* from an animal, but, without additional measures, they do not prevent reinfection. Use of these agents can lead to the development of acaricide resistance in ticks, and may also have other adverse environmental effects, including incidental effects on other arthropods. Resistance to several acaricides and anti-parasitic agents, including ivermectin, has been reported in *R. annulatus*. Other control measures include pasture rotation, environmental modification to make sites less attractive to ticks, physical removal of ticks from an animal, the use of relatively tick-resistant breeds, and other strategies. Under the climatic conditions in the U.S. tick quarantine zone, an infested pasture must remain free of all livestock for 6 to 9 months or longer to break the tick life cycle.

European (*Bos taurus*) breeds of cattle usually remain fairly susceptible to ixodid ticks, even after multiple exposures. However, some cattle breeds such as Zebu (*Bos indicus*) and some Zebu crosses can become resistant. This resistance is most prominent against larvae, which are unsuccessful in their attempts to feed and soon die. Based on this principle, vaccines are under investigation for *B. annulatus*, and two vaccines against the closely related tick *B. microplus* were licensed in some countries. At least one of these vaccines was also effective for *B. annulatus*. However, the *B. microplus* vaccines were not a commercial success, due to variable efficacy against different tick populations and the requirement for frequent boosters. One is no longer made and the other has limited availability.

Public Health

R. annulatus can feed on humans.

Internet Resources

- **Hard Ticks from the University of Edinburgh** (photographs)
- **United States Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS)**
- **USDA APHIS, Vector-borne diseases** (includes information on cattle ticks)
- **University of Bristol, Tick Identification Key** (for ticks of veterinary importance).
- **World Organization for Animal Health (WOAH)**
- **WOAH Terrestrial Animal Health Code**

Acknowledgements

This factsheet was written by Anna Rovid Spickler, DVM, PhD, Veterinary Specialist from the Center for Food Security and Public Health. The U.S. Department of Agriculture Animal and Plant Health Inspection Service (USDA APHIS) provided funding for this factsheet through
a series of cooperative agreements related to the
development of resources for initial accreditation training.
The following format can be used to cite this factsheet.
Spickler, Anna Rovid. 2022. Rhipicephalus (Boophilus) annulatus. Retrieved from
http://www.cfsph.iastate.edu/DiseaseInfo/factsheets.php.

References

Abouelhadi SM, Arafà WM, Mahrous LN, Fahmy MM, Kamel
AA. Molecular detection of Rhipicephalus (Boophilus) annulatus resistance against deltamethrin in middle Egypt. Vet
Parasitol Reg Stud Reports. 2018;198-204.

Ajith Kumar KG, Ravindran R, Johns J, Chandy G, Rajagopal K,
Chandrasekhar L, George AJ, Ghosh S. Ixodid tick vectors of
wild mammals and reptiles of southern India. J Arthropod

Bouattour A, Darghouth MA, Daoud A. Distribution and ecology
of ticks (Acari: Ixodidae) infesting livestock in Tunisia: an
overview of eighth years field collections. Parasitologia.

Cooksey LM, Davey RB, Ahrens EH, George JE. Suitability of
white-tailed deer as hosts for cattle fever ticks (Acari:

Coronel-Benedett KC, Ojeda-Robertos NF, González-Garduño R,
Ibañez FM, Rodríguez-Vivas RI. Prevalence, intensity and
population dynamics of hard ticks (Acari: Ixodidae) on sheep
in the humid tropics of Mexico. Exp Appl Acarol.

Corwin RM, Nahm J. Boophilus spp [online]. University of
Missouri, College of Veterinary Medicine; 1997. Available at:
http://www.parasitology.org/Arthropods/Arachnida/Boophilus

Davey RB. Stagewise mortality, ovipositional biology, and egg
viability of Boophilus annulatus (Acari: Ixodidae) on
Boselaphus tragocamelus (Artiodactyla: Bovidae). J Med

El-Ashram S, Aboelhadi SM, Kamel AA, Mahrous LN, Fahmy
MM. First report of cattle tick Rhipicephalus (Boophilus)
anulatus in Egypt resistant to ivermectin. Insects.

Estrada-Péna A, Bouattour A, Camicas JL, Guglielmone A, Horak
I, Jongejan F, Latif A, Pegram R, Walker AR. The known
distribution and ecologial preferences of the tick subgenus
Boophilus (Acari: Ixodidae) in Africa and Latin America. Exp

Estrada-Péna A, Farkas R, Jaenson TG, Koenen F, Madder M,
Pascucci I, Salman M, Tarres-Call J, Jongejan F. Association of
environmental traits with the geographic ranges of ticks
(Acari: Ixodidae) of medical and veterinary importance in the

Estrada Peña A, Venzal JM. High-resolution predictive mapping
for Boophilus annulatus and B. microplus (Acari: Ixodidae) in

Figueiredo LT, Badra SJ, Pereira LE, Szabo MP. Report on ticks
collected in the Southeast and Mid-West regions of Brazil:
analyzing the potential transmission of tick-borne pathogens to

Foley AM, Goolsby JA, Ortega-S A Jr, Ortega-S JA, Pérez de
León A, Singh NK, Schwartz A, Ellis D, Hewitt DG,
Campbell TA. Movement patterns of nilgai antelope in South
Texas: Implications for cattle fever tick management. Prev Vet

Food and Agriculture Organization of the United Nations [FAO].
Boophilus [online]. FAO. 1998. Available at:
http://www.fao.org/WAICENT/faoInfo/Agricult/AGA/AGAH

Fragoso H, Rad PH, Ortiz M, Rodríguez M, Redondo M, Herrera
L, da la Fuente J. Protection against Boophilus annulatus
infestations in cattle vaccinated with the B. microplus Bm86-

Galaviz-Silva L, Pérez-Treviño KC, Molina-Garza ZJ.
Distribution of ixodid ticks on dogs in Nuevo León, Mexico,
and their association with Borrelia burgdorferi sensu lato. Exp

Gray JH, Payne RL, Schubert GO, Garnett WH. Implication of
white-tailed deer in the Boophilus annulatus tick eradication
program. Proc Annu Meet U S Anim Health Assoc.

Horak IG, Camicas JL, Keirans JE. The Argasidae, Ixodidae and
Nuttalllicellidae (Acari: Ixodidae): a world list of valid tick

Kahn CM, Line S, editors. The Merck veterinary manual [online].
Available at:

Kahn CM, Line S, editors. The Merck veterinary manual [online].
Whitehouse Station, NJ: Merck and Co; 2003. Ticks:
Introduction. Available at:

Kahn CM, Line S, editors. The Merck veterinary manual [online].
Available at:

Kaliyannan M. Prevalence of tick infestation and comparative
efficacy of different drugs in buffaloes. Buffalo Bulletin.

Linthicum KJ, Bailey CL. Ecology of Crimean-Congo
hemorrhagic fever. Biology of ticks. Host preferences. In:
Sonenshine DE, Mather TN, editors. Ecological dynamics of
tick-borne zoonoses. New York: Oxford University Press;
1994, p 423.

Lofitis AD, Reeves WK, Szumlas DE, Abbassy MM, Helmy IM,
Moriarity JR, Dasch GA. Rickettsial agents in Egyptian ticks
collected from domestic animals. Exp Appl Acarol.

Lohmeyer KH, May MA, Thomas DB, Pérez de León AA.
Implication of nilgai antelope (Artiodactyla: Bovidae) in
reinfestations of Rhipicephalus (Boophilus) microplus (Acari:
Ixodidae) in South Texas: a review and update. J Med

Lohmeyer KH, Pound JM, May MA, Kammlah DM, Davey RB.
Distribution of Rhipicephalus (Boophilus) microplus and
Rhipicephalus (Boophilus) annulatus (Acari: Ixodidae)
infestations detected in the United States along the

Rhipicephalus (Boophilus) annulatus

© 2003-2022 www.cfsph.iastate.edu

Scoles GA, Hussein HE, Olds CL, Mason KL, Davis SK. Vaccination of cattle with synthetic peptides corresponding to predicted extracellular domains of *Rhipicephalus (Boophilus) microplus* aquaporin 2 reduced the number of ticks feeding to repletion. Parasit Vectors. 2022;15(1):49.

* Link is defunct