

PRINCIPLES OF VETERINARY VACCINOLOGY VERSION

POWERPOINTS

JAMES A. ROTH, DVM, PhD, DACVM · GAYLE BROWN, DVM, PhD · KEVAN FLAMING, DVM, PhD

Principles of Veterinary Vaccinology Lecture Checklist

Lecture Title	(ap	proximate length	Page #
		-	

□ Introduction to Veterinary Vaccinology (13.5 min)	pg. 5
☐ Basis of Protective Immunity (25 min)	pg. 7
□ Veterinary Vaccine Regulations (23.5 min)	pg. 10
□ Principles of Vaccine Labeling (6.5 min)	pg. 15
□ Properties of Vaccine Types (8.5 min)	pg. 17
□ New Technology for Improved Vaccine Safety, Efficacy, and/or Production (27.5 min)	pg. 19
☐ Adjuvants in Veterinary Vaccines: Modes of Action and Adverse Effects (9 min)	pg. 31
☐ Reasons for Vaccine Failure (27 min)	pg. 34
☐ Adverse Vaccine Reactions (36 min)	pg. 41
□ Duration of Immunity (16.5 min)	pg. 49
□ Vaccination in the Presence of Maternal Antibody (21.5 min)	pg. 55
Vaccination to Protect Mucosal Surfaces	
☐ General Concepts and Protection from Respiratory Diseases (14 min)	pg. 60
□ Protection from Enteric Disease (10.5 min)	pg. 64
☐ Multifactorial Diseases and Herd Immunity (12.5 min)	pg. 69

Principles of Veterinary Vaccinology

Jim Roth, DVM, PhD jaroth@iastate.edu

Gayle Brown, DVM, PhD

Center for Food Security and Public Health College of Veterinary Medicine Iowa State University

Risks of Vaccination

- Vaccine-related side effects
 - o Vaccine-associated feline fibrosarcomas
 - Hypersensitivities
 - Anaphylaxis
 - o Nonspecific systemic side effects
 - · Fever, lethargy, loss of appetite
 - Localized reactions
- Alterations in immune homeostasis
 - o Allergy?
 - o Autoimmune disease?
 - Post-vaccinal polyneuropathy

Veterinary Vaccines are Essential for

- Safe and efficient food production
- Control of emerging and exotic diseases of animals and people
- · Control of zoonotic diseases
- Reduction of transmission of food borne disease
- Reduction of animal suffering
- Reduction of the need for antibiotics to treat animals
- Control of diseases of companion animals and horses

AVMA Approved Principles of Vaccination

- Approved by AVMA Executive Board April 2001; revised April 2007
- Introduction

"Selecting vaccine products and recommending vaccine programs are among the most complicated of medical decisions facing the veterinarian."

AVMA Approved Principles of Vaccination

Vaccination protects a population of animals... Vaccination does not protect every individual patient even when they are properly vaccinated

AVMA Approved Principles of Vaccination

Knowledge of immunology and vaccinology, including associated benefits and risks, and the pathobiology of infectious diseases, are necessary to implement an effective vaccination program.

Principles of Vaccinology **Topics** • Basis of protective immunity • Veterinary vaccine U.S. regulations • Properties of vaccine types · Reasons for vaccine failure • Adverse vaccine reactions • Duration of immunity Vaccination in the presence of maternal antibody • Vaccination to protect mucosal surfaces Vaccination for multifactorial diseases and herd immunity Basis of Protective Immunity What is the Basis for Protective Immunity for the Disease in Question • Circulating antibody? Mucosal antibody? Cell-mediated immunity? o Cytokine secretion? o Cytotoxic T cells? o Gamma delta T cells? • What are the important antigens?

Basis for Protective Immunity

Pathogenic Mechanisms	Defensive Mechanisms
Adherence to mucosa	Mucosal antibody (IgA)
Parasites	TH2, IgE
Exotoxin/Endotoxin	Neutralizing antibody
Viremia	Neutralizing antibody
Septicemia	Opsonizing antibody
Intracytoplasmic growth	Cytotoxic T cells
Rapid virus replication	Types 1 and 2 Interferons
Intracellular growth	Th1 cytokines
Infect epithelial cells	Gamma delta T cells

Basis for Protective Immunity: Respiratory Virus Infection

Pathogenic Mechanisms	Defensive Mechanisms		
Adherence to mucosa	Mucosal antibody (IgA)		
Parasites	-T _H 2, IgE		
Exotoxin/Endotoxin	-Neutralizing antibody		
Viremia	Neutralizing antibody		
Septicemia	Opsonizing antibody		
Intracytoplasmic growth	Cytotoxic T cells		
Rapid virus replication	Types 1 and 2 Interferons		
Intracellular growth	Th1 cytokines		
Infect epithelial cells	Gamma delta T cells		

Bacterial Antigens

Antibody Response to Viral Antigens Illustrated by Ann Atterberry, 2011

Genetic Diversity of BVDV

T Cell Mediated Immunity to Viral Antigens

- External viral antigens may be highly variable to avoid antibody neutralization (especially RNA viruses)
- Non-structural proteins are often highly conserved because they must interact with cell machinery for replication
 - o Antibody does not bind to them
 - \circ They are processed through the exogenous pathway and stimulate $T_{\rm H}$ cells
 - They are processed through endogenous pathway and stimulate CD8 T cells (CTLs)
 - CTLs and TH cells can provide broad protection against some viruses that have antigenic variation in external proteins
 - Killed vaccines do not usually stimulate CD8
 T cell immunity to non-structural proteins