Canine Influenza

Importance

Influenza is a viral disease that has long been known to affect birds and some mammals, but was only recently recognized in dogs. Each influenza virus is maintained in one or more related host species; however, host specificity is not absolute. A virus may occasionally infect other animals, or on rare occasions, become adapted to a new species. No influenza viruses were known to circulate in dogs until 2004-2006, when a virus caused outbreaks of severe and often fatal respiratory disease among racing greyhounds in the U.S. This virus was acquired from horses, and probably entered greyhound populations several years before these outbreaks. Although it has spread to other dogs since this time, the illness in these animals has been more typical of influenza. The most common syndrome is a relatively mild upper respiratory disease with a persistent cough. Pneumonia is possible, generally as the result of secondary infection with bacteria or mycoplasma, but uncommon. At present, infections tend to be seen mainly in animal shelters, kennels, dog day care facilities, or other sites where groups of susceptible dogs are in close contact. This virus does not seem to have spread widely in other pets, and it has not yet been reported outside North America.

A second canine influenza virus was recognized in 2007, when a different virus caused an outbreak of severe respiratory disease in South Korea. This virus seems to have been acquired from birds, and may have entered canine populations around 2005. It was subsequently reported in China and Thailand, and can affect cats as well as dogs. Many reported clinical cases from Asia have been severe, but antibodies have been found in significant numbers of healthy dogs and cats there, suggesting that some animals have milder illnesses. This virus entered North America in 2015. While large numbers of cases have been reported among dogs in the U.S., there have been few deaths, as of November 2015, and most cases appear to be mild.

Other influenza viruses can also affect dogs, without persisting in canine populations. Equine influenza viruses have caused a few small outbreaks, and there are occasionally reports of infections or clinical cases caused by viruses adapted to birds or humans.

Etiology

Canine influenza viruses belong to the species *influenza A virus*, genus *Influenzavirus A*, and family *Orthomyxoviridae*. Other influenza A viruses circulate in birds (avian influenza viruses), horses and other equids (equine influenza viruses), pigs (swine influenza viruses) or people (human influenza A viruses). Influenza A viruses are classified into subtypes based on two surface proteins, the hemagglutinin (HA) and neuraminidase (NA). The subtype designation consists of the HA and NA found in that virus (e.g., H1N2). While at least 16 types of hemagglutinins (H1 to H16), and 9 neuraminidases (N1 to N9) are known to exist in birds, and two additional HA and NA types occur in bats, only a few avian subtypes (and no bat subtypes) have adapted to circulate in other mammals.

Influenza A viruses are extremely variable, and two viruses that share a subtype may be only distantly related. Nevertheless, all influenza A viruses (except possibly the bat viruses) are similar enough that they can ‘reassort,’ exchanging gene segments to produce progeny containing elements of both parental viruses – regardless of their original host specificity or subtype. Influenza A viruses can also infect species other than the hosts in which they normally circulate, and on rare occasions, they may adapt to circulate in a new host. [The ‘Influenza’ factsheet contains a more extensive description of these processes.] Dogs have acquired two influenza viruses since 1999, an H3N8 virus that came from horses, and an H3N2 virus that came from birds.

The North American H3N8 canine influenza virus seems to have jumped directly from horses to dogs, probably in the late 1990s or early 2000s. It is most closely related to the ‘Florida lineage’ of H3N8 equine influenza viruses, which emerged in the early 1990s. The H3N8 canine influenza virus is maintained in dog populations, and may be evolving into two lineages. It has diverged considerably from equine influenza viruses, and no longer seems to be capable of replicating efficiently in
horses. The H3N2 canine influenza virus seems to have originated in birds. It is reported to contain gene segments that may have come from several different avian influenza viruses. There is some evidence for its presence among dogs in South Korea as early as 2005, and in China in 2006. H3N2 canine influenza viruses have acquired some diversity in the HA and NA, and appear to be evolving separately in these two countries. There is also evidence of occasional reassortment with avian influenza viruses from poultry. A recent analysis suggested that one canine H3N2 isolate may have acquired a gene from an avian H5N1 HPAI virus. In another case, an H3N2 virus had evidence of reassortment with an avian H9N2 virus.

Other influenza A viruses are also found sporadically in dogs, but are not maintained in canine populations, and are not considered to be canine influenza viruses. They include H3N8 equine influenza viruses, which have caused a few isolated outbreaks in dogs exposed to infected horses, and human influenza viruses including the 2009 pandemic H1N1 influenza virus. An H3N1 virus, which seems to be the result of reassortment between the H3N2 canine influenza virus and the 2009 pandemic H1N1 virus, was recently isolated from a dog with respiratory signs in Korea. A naturally co-infected dog, infected with the latter two ‘parental’ viruses, has been described. A few dogs have also been affected by some viruses found in birds, such as the Asian lineage H5N1 highly pathogenic avian influenza (HPAI) viruses, an H5N2 HPAI virus that is closely related to this virus, and H9N2 viruses.

Species Affected

As of 2015, the H3N8 canine influenza virus has only been reported in dogs. Its ability to replicate in horses appears to be greatly reduced, with low or absent virus shedding, and inefficient transmission from experimentally infected horses to naive horses. One study reported that horses were not infected when kept in close contact with experimentally infected dogs. One group reported finding viral nucleic acids in two cats, but concluded that the cats were not infected as they never developed measurable antibody (HI) titers to the virus. In laboratory studies, the H3N8 canine influenza virus was not transmitted readily to chickens, turkeys or ducks, and it did not replicate well in pigs.

The H3N2 canine influenza virus has caused clinical cases in dogs and cats in Asia, and antibodies to this virus have been found in both species. Dogs and cats can be infected by contact with experimentally infected dogs, and cats can transmit the virus to other cats. Ferrets can become infected after direct inoculation of the virus in the laboratory, but they seem to be less susceptible: ferrets did not become infected after exposure to experimentally infected dogs, and ferret-ferret transmission was limited. Guinea pigs are also susceptible to experimental infection, but there was no evidence for virus replication or shedding in experimentally inoculated chickens, ducks, mice or pigs.

Geographic Distribution

The H3N8 canine influenza virus has been detected, at least sporadically, in most states in the U.S. The distribution of this virus is patchy; in some cases, it caused an outbreak or was detected serologically in an area, but later disappeared. There is no evidence that it currently circulates outside the U.S. As of February 2016, the H3N2 canine influenza virus has been confirmed in Korea, China, Thailand and North America (the U.S.). A serological study found no evidence of its presence in Japan.

Infections with viruses not adapted to dogs can occur wherever these viruses are endemic. Human influenza viruses occur worldwide, and H3N8 equine influenza viruses are widely distributed. Avian influenza viruses are also widely distributed, although different viruses can circulate in different areas.

Transmission

In mammals, influenza viruses are usually transmitted in droplets and aerosols created by coughing and sneezing, and by contact with nasal discharges, either directly or on fomites. Close contact and closed environments favor transmission. The H3N8 and H3N2 canine influenza viruses are both found in respiratory secretions, as is typical of mammalian influenza viruses. Fecal shedding has not been reported for either virus.

The H3N8 canine influenza virus can be detected in the respiratory secretions of both symptomatic and subclinically infected dogs. Overall, virus titers seem to be low, and the H3N8 canine influenza virus does not appear to spread rapidly in the community. However, transmission can occur more efficiently where groups of susceptible dogs are in close contact (e.g., in a kennel). The H3N2 canine influenza virus might be transmitted more efficiently. In addition, treatment with glucocorticoids (prednisolone) was reported to prolong the shedding of the latter virus; in one experiment, the H3N2 canine influenza virus could be detected in the nasal secretions of some treated dogs for as long as 13 days, compared to 8 days in the controls. Experimentally infected cats can shed the H3N2 canine influenza virus, and transmission between cats was reported to be rapid during one outbreak at one animal shelter in South Korea.

Dogs infected with other influenza viruses (i.e., those not adapted to dogs) may or may not transmit them to others in close contact. There seems to be no significant dog-to-dog transmission of H3N8 equine influenza viruses.

There is no specific information on the persistence of canine influenza viruses in the environment; however, it is likely to be similar to other mammalian influenza viruses. Human influenza A viruses seem to remain viable for less than 24-48 hours on most surfaces, with recovery from porous surfaces sometimes lasting less than 8-12 hours. Nevertheless, some data indicate that they might survive longer on some fomites or in some conditions. Low
temperatures and protection from sunlight enhance virus survival. Swine influenza viruses and avian influenza viruses can persist in feces from <1 day to 2 weeks or longer, depending on environmental factors including desiccation. Avian influenza viruses and human influenza A viruses may be found for weeks or months in some types of water (e.g., distilled), although they might be inactivated faster in aquatic environments that contain normal microbial flora.

Disinfection

Influenza A viruses are susceptible to a wide variety of disinfectants including sodium hypochlorite, 60% to 95% ethanol, quaternary ammonium compounds, aldehydes (glutaraldehyde, formaldehyde), phenols, acids, povidone-iodine and other agents. Common household agents including 1% bleach, 10% malt vinegar or 0.01-0.1% dishwashing liquid (washing up liquid), as well as antimicrobial wipes, were found to destroy the viability of human influenza viruses, although hot water alone (55°C; 131°F) did not eliminate these viruses rapidly. Influenza A viruses can also be inactivated by heat of 56-60°C (133-140°F) for a minimum of 60 minutes (or higher temperatures for shorter periods), as well as by ionizing radiation or extremes of pH (pH 1-3 or pH 10-14).

Incubation Period

The incubation period for H3N8 canine influenza is thought to be one to 5 days, with most cases appearing in 2 to 3 days.

Fever has been reported as soon as one to 3 days in dogs inoculated with the H3N2 canine influenza virus, with respiratory signs developing 2 to 8 days after inoculation. In experimentally infected cats, clinical signs first appeared after 2 to 7 days.

Clinical Signs

Canine influenza (H3N8)

The most common presentation in H3N8 canine influenza is a mild illness that resembles infectious tracheobronchitis (kennel cough) or other upper respiratory diseases. An initial (usually low grade) fever may be followed by a persistent cough, which tends to be nonproductive and dry (in cases not complicated by co-infections), but may also be soft and moist. The cough can last for up to 3 weeks regardless of treatment. Other common clinical signs include nasal discharge, sneezing, ocular discharge, lethargy and anorexia. The nasal discharge can start clear but may quickly become mucopurulent. Purulent discharges seem to resolve with antibiotics, suggesting the involvement of secondary bacterial infections. Some dogs have only a low fever, without respiratory signs, and asymptomatic seroconversion has been reported.

More severely affected dogs exhibit a high fever with an increased respiratory rate and other signs of pneumonia or bronchopneumonia. Severe lung involvement seems to occur mainly in cases with secondary bacterial or mycoplasmal infections. During the initial outbreaks among racing greyhounds, some dogs were found dead percutely with evidence of hemorrhages in the respiratory tract. This syndrome does not seem to be prominent in pets.

Experimentally infected horses had mild clinical signs compared to horses inoculated with equine influenza viruses, or remained asymptomatic.

Canine influenza (H3N2)

Clinical cases reported in dogs have been characterized by fever (which may be low) and respiratory signs including nasal discharge, sneezing, coughing and anorexia. The nasal discharge was described as copious in one report. Dogs affected in early reports from South Korea and China were severely ill, and although few cases were reported, a number of them were fatal. Affected dogs developed mild to severe respiratory signs during two outbreaks at animal shelters in South Korea, with significant numbers of deaths. Similar respiratory signs were described during a recent outbreak at a veterinary hospital in Thailand. The severity of the clinical signs was not described in this report, but no deaths are mentioned. Some of these dogs were ill for as long as 7-10 days. In Asia, some dogs without a history of severe respiratory disease are seropositive, suggesting that subclinical infections may also occur. There are currently no published articles describing the outbreaks in the U.S.; however, informal reports suggest that most cases have been characterized by relatively mild upper respiratory signs, with few deaths.

The H3N2 canine influenza virus also seems to cause illness in cats. This virus has been found in cats during outbreaks of respiratory disease among dogs and cats at two animal shelters in South Korea. The clinical signs in the cats included coughing, dyspnea, tachypnea and lethargy, and a significant number of infections were fatal. Co-infections might have played some role in at least one of these outbreaks, as Bordetella bronchiseptica was also found in at least one cat. Cats that were experimentally infected with the H3N2 canine influenza virus had elevated temperatures, lethargy and respiratory signs including coughing, sneezing, ocular and nasal discharge, conjunctivitis and abdominal breathing. Antibodies to the H3N2 canine influenza virus have also been reported in apparently healthy cats.

Although ferrets were not very susceptible to this virus, some experimentally infected animals developed clinical signs. Sneezing was seen most often, and some animals were lethargic and anorectic. Experimentally infected guinea pigs remained asymptomatic, but developed lung lesions.

Other influenza viruses in dogs

In the U.K., an H3N8 equine influenza virus caused a limited outbreak among foxhounds in 2002. The disease was characterized by coughing, lethargy and weakness,
Canine Influenza

Post Mortem Lesions

Canine influenza (H3N8)

Fatal H3N8 canine influenza cases in racing greyhounds were often characterized by hemorrhages in the lungs, mediastinum and pleural cavity. The lungs also exhibited signs of severe pneumonia, and were dark red to black. Fibrinous pleuritis was seen in some cases. In other dogs, fatal cases seem to be characterized mainly by suppurative secondary bacterial pneumonia, and hemorrhagic pneumonia does not appear to be common. Bronchitis and tracheitis were the only significant lesions in 5 shelter dogs that were euthanized primarily for a chronic cough unresponsive to antibiotics.

Based on studies in experimentally infected dogs, the early lesions are thought to be tracheitis and bronchitis, with some extension to the bronchioles. Variable lower respiratory tract lesions may be seen, especially later in the illness, and may include petechiae, areas of consolidation and other lesions consistent with viral pneumonia.

Canine influenza (H3N2)

Severe hemorrhagic, cranioventral bronchointerstitial pneumonia was reported in most fatal cases of canine H3N2 influenza in naturally infected dogs from Asia; however, only partial necropsies were available and only for a limited number of cases. Experimentally infected dogs also had signs of pneumonia with multifocal to coalescing reddish consolidation, edema and hemorrhages in the lungs. No lesions were found outside the respiratory tract.

During one outbreak of severe respiratory disease in cats, the lesions included severe bronchopneumonia with consolidation in large areas of the lung, and pulmonary edema in some cats. Some cats were coinfected with other respiratory pathogens.

Some experimentally infected ferrets and guinea pigs had areas of consolidation in the lungs.

Diagnostic Tests

Canine influenza (H3N8)

Serology and reverse transcription polymerase chain reaction (RT-PCR) assays are the most reliable methods for detecting H3N8 canine influenza. Hemagglutination inhibition is considered the serological test of choice. Virus neutralization (microneutralization test) can also be done, but this test is usually too cumbersome for routine use. Antibodies usually develop 7-10 days after infection and continue to rise to high levels around 14 days. Although acute and convalescent titers are ideal, many dogs do not have pre-existing titers to this virus, and a single sample collected more than 7 days after the onset of clinical signs may be useful.

RT-PCR is the most reliable method to detect the virus directly, due to its sensitivity. Nasal swabs are the preferred sample from live dogs, and were more likely to yield virus than nasopharyngeal swabs in experimentally infected dogs. Lung tissue samples are collected at necropsy. Virus isolation may also be done, but it is unlikely to be successful in a dog that has had clinical signs for more than 3 days. The H3N8 canine influenza virus has been isolated in both embryonated eggs and cell cultures (MDCK cells); some viruses have been recovered in only eggs or cells, while others can be isolated in both systems. Both virus isolation and RT-PCR can fail to detect the virus in infected dogs if the samples are collected too late.

Antigen-capture ELISA tests do not seem to be reliable in individual dogs, probably because virus shedding is low, and the timing of sample collection is not always optimal. A recent study suggested that the sensitivity of these tests is much lower than RT-PCR and lower than virus isolation, and false positives were also common. However, they may be useful during investigations of outbreaks at kennels or other facilities housing groups of dogs.

Canine influenza (H3N2)

Little has been published about diagnostic testing for H3N2 canine influenza, but virus isolation and RT-PCR were used in some outbreaks, and a multiplex PCR assay developed in South Korea has been published. Respiratory samples (e.g., nasal swabs) are collected. Serological tests
may also be helpful, and at least one test is now available in the U.S. It should be noted that the H3N8 and H3N2 canine influenza viruses differ significantly; RT-PCR and serological tests used to detect the H3N8 canine influenza virus will not detect infections with the H3N2 virus.

Treatment

Treatment is supportive, and often includes antibiotics to control secondary bacterial infections. Although antiviral drugs (e.g., neuraminidase inhibitors) are sometimes used in cases of human influenza, these drugs have not been tested in canine influenza. They are most useful during the first 48 hours after the onset of clinical signs, and in many cases, this period is likely to have passed by the time the dog is seen by a veterinarian. The risk that viruses might become resistant to these drugs is also a concern.

Control

Disease reporting

Official reporting requirements for canine influenza differ between areas, and this disease is currently reportable in some U.S. states, but not others. However, information about outbreaks is often disseminated even in locations with no formal requirement to report this disease.

Prevention

Vaccines for canine influenza are available in some areas. A licensed vaccine for the H3N8 canine influenza virus is commercially available in the U.S. An H3N2 canine influenza virus has been approved in South Korea. The degree of cross-protection between these viruses, if any, is currently unclear.

Influenza viruses usually spread most readily when susceptible animals are in close contact. Infection control measures are similar to those used for other contagious respiratory diseases, and include isolation of infected animals; cleaning and disinfection of cages, bowls and other fomites; and hygiene measures including hand washing. Clothing can be cleaned by washing it with detergent at normal laundry temperatures.

Veterinarians should be alert to announcements of canine influenza outbreaks in an area. Clients should also be advised to consult a veterinarian if their dog develops signs of a respiratory illness, and should be questioned about potential exposures to other dogs (e.g., recent boarding). When outbreaks occur at establishments, quarantines and the isolation of infected animals can reduce virus dissemination to the community and within the facility.

Morbidity and Mortality

In mammals, the severity of the clinical signs can differ with the virus, and is also influenced by host factors such as immunity, age and concurrent diseases. Uncomplicated infections with influenza viruses adapted to that host tend to be associated with high morbidity rates, low mortality rates and rapid recovery. More severe disease and higher mortality rates may be seen in young, old or debilitated animals. Secondary bacterial infections can exacerbate the clinical signs, prolong recovery and result in complications such as pneumonia. Infections with viruses not adapted to that host vary widely in severity; some viruses typically cause asymptomatic infections and mild illnesses, while others tend to cause severe disease.

Canine influenza (H3N8)

Although H3N8 canine influenza was first reported in racing greyhounds, all breeds are now considered to be susceptible. The greatest risk of infection is among dogs that reside in kennels or are exposed to transient groups of dogs, as in animal shelters or dog day care facilities. In some facilities, more than 40% of the dogs may be seropositive. Infected dogs from these high risk populations may introduce the virus into new areas. Currently, the H3N8 canine influenza virus does not appear to be common among household pets in the U.S., with studies reporting seroprevalence rates less than 5%. In some areas, exposure rates have been low even in pets that participate in some types of gatherings (e.g., flyball tournaments). One study suggested that canine influenza is rare, if it exists at all, in Canada. In the province of Ontario, a survey found antibodies to the H3N8 virus in only one of 225 dogs in 2006. This dog was a greyhound that had come from a racetrack in Florida, and may have been infected there. More recently, no seropositive dogs were found among Canadian and U.S. dogs that participated in the 2010 Iditarod race.

During outbreaks among fully susceptible dogs in close contact (e.g., in kennels), the infection rate may approach 100%, and clinical signs in 60-80% of the dogs is not unusual. Most dogs are expected to develop the less severe form of the disease and recover; however, a more severe form with pneumonia occurs in a minority. The overall mortality rate is thought to be 1-5%, although some sources suggest that it might be as high as 8%. Secondary bacterial infections appear to contribute significantly to these deaths. Higher case fatality rates have been reported in small groups of greyhounds. At one Florida greyhound racetrack, the case fatality rate was 36%. More severe illness would also be expected in debilitated animals.

Canine influenza (H3N2)

Illnesses caused by the H3N2 canine influenza virus have been reported from veterinary hospitals, kennels and animal shelters in South Korea, China and Thailand, and recently, from dogs in the U.S. There is no known breed predilection; cases have been described in various species of dogs, as well as cats. Many of the reported clinical cases from Asia have been severe. In the initial report from Korea, only one of the 5 dogs seen at 3 veterinary clinics survived. Similarly, 2 of 4 cases in pet dogs diagnosed in China were fatal. During one explosive, severe outbreak at a Korean animal shelter, approximately 200 dogs and 50
Canine Influenza

Acknowledgements

This factsheet was written by Anna Rovid-Spickler, DVM, PhD, Veterinary Specialist from the Center for Food Security and Public Health. The U.S. Department of Agriculture Animal and Plant Health Inspection Service (USDA APHIS) provided funding for this factsheet through a series of cooperative agreements related to the development of resources for initial accreditation training.

The following format can be used to cite this factsheet. Spickler, Anna Rovid. 2016. Canine Influenza. Retrieved from http://www.cfsph.iastate.edu/DiseaseInfo/factsheets.php.

References

cats showed signs of respiratory disease. The morbidity rate in this outbreak was 100% in cats, while the case fatality rate was 25% in affected dogs, and 40% in cats. It is possible that other pathogens also contributed to this outbreak. At least one cat that died was co-infected with Bordetella bronchiseptica. During another outbreak in a South Korean animal shelter, the morbidity and mortality rates were reported to be 77% and 23%, respectively, in dogs, and 47% and 22%, respectively, in cats. Currently, signs among dogs in the U.S. generally appear to be milder, and the case fatality rate is reported to be low; news reports indicated that there were approximately 8 confirmed deaths due to this virus, among more than 1500 cases as of May, 2015.

Studies from Asia have reported antibodies to the H3N2 canine influenza virus among cats and dogs with or without respiratory signs. One study found that 3.5% of serum samples collected from dogs in South Korea between 2005 and 2009 were seropositive. Approximately 3% of pet cats and cats in colonies in South Korea also had antibodies to this virus. Studies from China have reported seroprevalence rates ranging from 3.5% to 33% in dogs, and 1% to 10% in cats. Some of these studies reported relatively high seroprevalence rates among stray dogs in animal shelters (20%), dogs raised for food (12%), and dogs living on poultry farms and near poultry markets (5-14% or 16-33%, depending on the assay); however, one study also reported antibodies in 33% of pet dogs. While cross-reactivity with other influenza viruses can complicate serological studies, some of these studies reported a pattern of reactivity that is higher to the H3N2 canine influenza virus than to H3 influenza viruses from other species.

Public Health

There are no reports of human infections with canine influenza viruses, although such infections are theoretically possible. As a precaution, physicians, veterinarians and others have been asked to report any cases of human influenza that seem to be linked to exposure to canine influenza. As a general practice, it is prudent for immunocompromised people, the elderly, young children and pregnant women to avoid contact with animals that are ill.

Internet Resources

Canine Influenza

Canine Influenza

Canine Influenza

*Link is defunct