Water-based Foam For Mass Depopulation of Poultry

Overview

Mass Depopulation of Poultry

- Euthanasia of large numbers of birds
 - Quickly, efficiently
 - Welfare consideration
- Disease outbreaks
 - Control disease spread to other flocks
 - End suffering of dying birds
- Natural disasters

Water-Based Foam for Depopulation

- Conditionally approved by USDA
 - Method for mass depopulation for floor-reared poultry
 - Under emergency response conditions or potential zoonotic disease
- USDA conditions and standards supported by AVMA

Advantages of Water-based Foam

- Rapid method for large flocks
- Less handling of birds
 - Less stress on birds
 - Less risk for injury to birds/responders
 - Less exposure to zoonotic diseases
- Decreased labor
 - Fewer personnel required

Advantages

- Foam flows into small areas/crevices
- Foam builds to required height
- Less biosecurity risk
 - Reduces dust and airborne pathogens
 - Adds moisture for composting
 - Disinfectant may be added
- Clean up of foam is minimal

Disadvantages of Water-based Foam

- Availability and cost
- Trained personnel
- Requires large amounts of water
- Floor-reared birds only
- Advance preparation is needed
 - Removal of slats or raised objects
Water-based Foam

- Water
 - Flow (gpm)
 - Pressure (psi)
 - Higher psi breaks down bubble size
 - Lower psi can have too much water

- Foam concentrate
 - 0.3 to 1%

- Air, inert gas, or anesthetic gas
 - Carbon dioxide

Foam Depopulation

- Foam of appropriate consistency and density
- Builds blanket to occlude upper airway
 - Creates atmosphere devoid of oxygen
 - Carbon dioxide causes rapid loss of
 - Consciousness
 - Breathing
 - Heart activity

Water-Based Foam for Depopulation

- USDA APHIS Performance Standards for the Use of Water-based Foam as a Method of Mass Depopulation of Domestic Poultry
 - Conditions and criteria for use
 - Foam size, expansion ratio, depth
 - Efficacy

USDA-APHIS Foam Standards

- Flow/Fluidity
 - Surround the birds completely
 - Without gaps caused by bird movement
 - Completely cover entire poultry house floor and any building supports/structures
 - Be of appropriate consistency that is readily inspired by birds

Expansion Ratio

- Expansion ratio
 - Ratio of volume of foam produced from one unit of solution
 - Higher ratio = drier foam
 - More foam needed
 - Foam harder to work with
 - Lower ratio = wetter foam
 - May not accumulate to sufficient depth

- Medium expansion rate is ideal
 - USDA: 25:1 to 140:1

USDA-APHIS Foam Standards

- Efficacy
 - 95% within 7 minutes
 - 100% within 15 minutes
- Bubble size
 - Similar to shaving cream
 - Not to exceed 1/16 inch (0.625 inch)
 - Bubbles greater than 1/3 inch (0.33 inch) may not achieve 100% mortality
 - Larger bubbles may break down when agitated
USDA-APHIS Foam Standards

- Consistency depends on
 - Temperature
 - Air humidity
 - Water hardness
 - Wind, if present
 - Type of equipment
- Body/Depth
 - Varies with species/age
 - At least 6 inches above bird height
 - Does not determine efficacy

Water

- Rate limiting step
 - Logistics important
- Capacity
 - 25,000-35,000 gallons per day
- Identify sources
- Transport
 - Water tenders
 - Farm water truck
 - Fire engines
 - Transfer to dump tank (e.g., 4,000 gallon)
- Water quality
 - Dissolved solids, salinity, pH, hardness
 - Biosecurity

Equipment Overview

- Foam Proportioning System
 - Digital system
 - Controls foam quality
 - Allows adjustment as conditions change
- Pump
 - Capable of 250 gpm at least 150 psi
- Hoses
 - Generally 1½ inch
 - Length can affect psi
 - Estimate loss of 25 psi per 100 feet of 1.5 inch hose
- Nucleation screen
 - Determines bubble size

Types of Foamers

- Nozzle System
 - Hand held
 - Expansion ratio of 35:1
- Generator System
 - Higher expansion ratio - 120:1 to 135:1
 - Less water and personnel

FOAM DEPOPULATION PROCESS

Multi-State Partnership for Security in Agriculture;
Center of Food Security and Public Health

June 2016
Before Beginning
- Trained personnel to properly run equipment
- Water supply/sources
- Condense large areas
 - Construct walls to help obtain/maintain height
 - Plywood and 2x6s
 - Seal seams with duct tape
 - Do not overcrowd

Foam Generator Placement
- Place generator at one end of facility
- Connect to hose/pulley at other end

Foam Generator Operation
- Generator pumps foam and retracts hose as it travels across the house
- Experienced personnel
 - Equipment operator: Outside
 - Pump operator: Inside
- Maintain constant foam production

Foam Degradation
- Persistence at least 30 minutes
- Then degrade quickly to prevent buildup
- Water within the foam will collect near the floor, taking longer to degrade

Post-Foaming Tasks
- Clean, disinfect depopulation equipment regardless of disease agent present
- Clean and disinfect all off-farm equipment upon arrival, departure from the farm

Species Termination Time
- Euthanasia times may vary with species
- University of Delaware depopulation study
 - Dr. Eric R. Benson
- Bar graph showing species termination times (in seconds)
Responder Safety

- Qualified personnel to operate and maintain
 - Fire department as possible resource
- Provide appropriate safety training
- Wear appropriate Personal Protective Equipment
 - Suitable respirator equipment (SCBA, oxygen)
 - Colored vests
- Foam is slippery
 - Higher carbon dioxide concentration near floor
 - Anyone working near foam should be observed at all times
 - Dermal irritation/eye irritation

Resources

- USDA APHIS: Use of Water-Based Foam for Depopulation of Poultry https://www.avma.org/Policies/Pages/Poultry-Depopulation.aspx
- University of Delaware, Depopulation, Dr. Eric Benson http://udel.edu/~ebenson/Depopulation.htm

Acknowledgments

Development of this presentation was by the Center for Food Security and Public Health at Iowa State University through funding from the Multi-State Partnership for Security in Agriculture.

Authors: Glenda Dvorak, DVM, MPH, DACVPM; Abbey Smith, BS