Carcass Disposal: Composting

Composting
- Carcasses layered with organic material
 - Thermophilic microbes
 - Heat generation
 - Accelerates biological decomposition
 - Destroys pathogens
- Relatively safe and simple
- Nutrient rich, organic byproduct – ‘humus’

Compost Components
- Nitrogen
 - Carcasses, manure
- Carbon
 - Plant co-compost
 - Sawdust, ground cornstalks, peanut hulls, mulch, poultry litter, leaves
 - 3-5 yards³/1000# carcass
- Carbon: Nitrogen ratio
 - 25:1 to 40:1 ideal

Moisture
- Moisture ~ 40-60%
 - Crucial for microbial growth
 - < 40% → Slower degradation
 - > 60% → Fills air pockets, less oxygen/air flow, Slower degradation

Oxygen
- Maintains aerobic environment
 - 5% ideal
- Dependent on pile porosity
 - Encourage natural air flow
- Aeration
 - Forced: use of fans
 - Active: mechanical turning
 - Passive: air exchange within pile

Composting Process
- 1st phase – aerobic
 - Oxygen dependent
 - High temperature (135-140°F)
 - 3-12 weeks
 - ~50% reduction in biodegradable solids
- 2nd phase – curing
 - Lower temperature (77-86°F)
 - 10-240 days
 - Aeration less critical
 - Bulk density reduced 25%
Temperature
- Temperature range
 - 120-150°F
 - Monitor frequently
- Inconsistent throughout pile
 - "cool zone" on surface
- Ambient temperature can influence decomposition

Mixing
- Accelerates decomposition
- When core temperature
 - > 140°F
 - <90°F
- Form new windrow or transport to second bin

COMPOST DESIGN

Location
Indoors
- Less affected by
 - Weather, ambient temperature, wind, scavengers
- Space limitations
- Vehicle movement
- Prolonged management and monitoring

Outdoors
- Large animal
- Cover to protect
 - Weather
 - Scavengers
- Site location
 - Away from public areas, animal areas, water sources
 - Vegetated site
 - Clay/impermeable base

Basic Design
- Base layer (18-24")
 - Porous
 - Absorbent
- Carcasses
 - Whole or ground
 - Caution if zoonotic

Basic Design
- Layer with co-compost (4-6")
 - 5-7 feet high total
 - 12 inches on sides
- Biofilter layer on top
 - Weather dependent
 - Cool weather-silage
 - Warm weather-cornstalks
 - Porous materials
 - Absorbs moisture and promotes air flow
Pile Types: Bins
- Construction
 - Treated lumber or concrete
 - 3 sided, doors, drop-board front
 - Size dependent on carcass size and equipment used
- Secondary bins
 - For mixing or storing co-compost
 - Decreases scattered material
 - Retains heat well

Pile Types: Open and Windrows
- Size dependent on carcass
 - Place carcasses away from pile edge
 - Thick cover layer
- Management important
 - Check temperature, monitor pile
 - Add extra cover when necessary

Distributing Compost
- FAD may make compost unsafe for cropland
- Soft tissue should be decomposed
- Large bones should be buried
- Nutrient levels should be tested
- Reuse as compost cover material

CONSIDERATIONS

Composting Considerations
- On-site process
- Adaptable process
- Nutrient rich end product
- Transport of co-compost material
- Regulations

Record Keeping
- Start date of each compost batch
- Date and quantity of dead animal(s) or additions
- Internal temperature of each active compost batch
 - Measured, at minimum, weekly
- Date compost material aerated
Biosecurity

- Responders must
 - Wear appropriate PPE
 - Follow movement control procedures
- Vehicle cleaning and disinfection
- Site security
- Public perception

Resources

- USDA Foreign Animal Disease Preparedness (FAD PReP) Guidelines: Disposal
- USDA Foreign Animal Disease Preparedness Standard Operating Procedures (SOP): Disposal

Acknowledgments

Development of this presentation was by the Center for Food Security and Public Health at Iowa State University through funding from the Multi-State Partnership for Security in Agriculture.

Authors: Jessica Kennicker, BS
Reviewer: Glenda Dvorak, DVM, MPH, DACVPM