Surveillance

During Animal Disease Emergencies
Overview

- Ongoing, systematic collection, analysis, and interpretation of health-related data
- Essential for planning, implementation, and evaluation
- Disease prevention and control measures

Role of Surveillance

- Estimate location and distribution
- Detect infected animals/premises
- Monitor changes
- Facilitate response planning
- Evaluate outbreak control strategies
- Prove location is free of the disease

What You Will Need To Know

- Target disease
 - Organism
 - Animal only
 - Zoonotic
 - Level of PPE
 - Biosecurity
 - Incubation period
 - Trace back
 - Trace forward
- Transmission route
 - Trace additional cases
 - How pathogen spreads
 - Animals
 - Fomites
 - Vectors

What You Will Need To Know

- Type of data needed
 - Visual Inspection
 - Diagnostic testing
 - Survey - Review records
 - Vaccination status
 - Environmental exposure
 - History

Data Collection

- Sample parameters
 - Susceptible animals
 - Including wildlife
 - Population size
 - Sampling method
 - Sample size
 - Sampling frequency
 - Sampling unit
 - Individual
 - Pooled samples
Case Definition

- Clinical criteria
 - Clinical signs in individuals
- Epidemiological criteria
 - Mortality rates
 - Morbidity rates
- Laboratory criteria
 - Screening test
 - Confirmatory test
- Definition should include
 - Species
 - Location
 - Time

Just In Time Training for Animal Health Emergencies Surveillance During Animal Health Emergencies:

Case Classification

- Negative Case
 - No clinical signs
 - No positive lab results
- Suspect Case
 - Has clinical signs
 - No confirmed lab result
- Presumptive Positive Case
 - Has clinical signs
 - Has a positive lab result
- Confirmed Positive Case
 - Agent has been isolated and identified

Case Classification and Case Definition Example

- Highly Pathogenic Avian Influenza (HPAI)
 - Suspect Case
 - Bird/animal with clinical signs consistent with HPAI
 - Presumptive Positive Case
 - Bird/animal with clinical signs consistent with HPAI AND a positive laboratory result AND additional epidemiology indicative of HPAI
 - Confirmed Positive Case
 - Bird/animal that has clinical signs consistent with HPAI AND from which HPAI was isolated and identified in a USDA laboratory

Premises Classification

- Infected Premises
 - A presumptive positive or confirmed positive case exists
- Contact Premises
 - Susceptible animals exposed directly or indirectly to IP
- Suspect Premises
 - Susceptible animals under investigation for clinical signs compatible to case definition
- At-Risk Premises
 - Geographically close to infected premises
 - Susceptible animals but none have clinical signs compatible with disease
- Free Premises
 - No contact with infected premises and no suspect case

Contact Tracing

- Trace-backs
 - Tracing origin of animals brought onto infected premises
- Trace-forwards
 - Tracing locations of animals that have left infected premises and might be infected
Contact Tracing

- Complete contact tracing will include:
 - Animals
 - Vehicles
 - People
 - Food products
 - Animal products
- Take into account modes of transmission

Biosecurity and Safety

- Biosecurity:
 - Prevent spread
- Safety:
 - Zoonotic disease
- Personal Protective Equipment:
 - Coveralls, boots, gloves
 - Zoonoses: masks or respirators
 - Sample collection: goggles or face shield
- Disinfection

Public Interaction

- Access to private premises:
 - Owners may react differently
- Guidelines:
 - Travel in teams
 - Cell phones are necessary
 - Introduce yourself and purpose
 - Avoid confrontation
 - Leave if safety concerns exist

References

- USDA Resources for Conducting Animal Health Surveillance
 - Surveillance and Data Standards
 - Guidelines for Developing Animal Health Surveillance Plans
 - http://www.aphis.usda.gov/vs/nahss/resources.htm

Acknowledgments

Development of this presentation was by the Center for Food Security and Public Health at Iowa State University through funding from the Multi-State Partnership for Security in Agriculture.

Authors: Sarah Viera, MPH, Glenda Dvorak, DVM, MPH, DACVPM